Isolation and identification of bioactive compounds responsible for the anti-bacterial efficacy of Lotus corniculatus var. São Gabriel
DOI:
https://doi.org/10.22377/ijgp.v4i2.130Abstract
Lotus corniculatus (Fabaceae) is considered a forage plant utilized as food for ruminants in the south of Brazil. This herb is also actually used to treat intestinal infection in these animals. In our experiments, we evaluated the anti-bacterial activity of crude extract from L. corniculatus var. São Gabriel were assayed against Gram-positive and Gram-negative bacterium. The crude extracted did not show any anti-bacterial activity, but the hexane fraction did on Bacillus cereus (MIC=100 μg/mL) and on Enterococcus faecalis, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter calcoaceticus, and Providencia alcalifaciens (MIC=600, 800 or 1000 μg/mL). The Ethyl acetate fraction (AcOEt) also showed important anti-bacterial activity on Bacillus cereus, E. faecalis, and Acinetobacter calcoaceticus (MIC=800 μg/mL). The oleanolic acid isolated from hexane fraction showed the same effect on Staphylococcus aureus methycillin-resistant (MIC=100 μg/mL), L. monocytogenes (MIC=25 μg/mL), and Bacillus cereus (MIC=25 μg/mL). Further, Kaempferitrin isolated from ethyl acetate fraction has also shown anti-bacterial activity on Shighella flexinerii (MIC=100 μg/mL), Salmonella typhimurium (MIC=100 μg/mL), A. calcoaceticus (MIC=100 μg/mL), E. faecalis (MIC=3.9 μg/mL), and Bacillus cereus (MIC=8.5 μg/mL). This study suggests that L. corniculatus var. São Gabriel havepotential pharmacological property for a new anti-bacterial drug development.
Key words: Anti-bacterial activity, Kaempferitrin, Lotus corniculatus, Oleanolic acid, β-sitosterol.
Downloads
References
Yam MF, Asmawi MZ, Basir R. An investigation of the
antiinflammatory and analgesic effects of Orthosiphon stamineus
leaf extract. J Med Food 2008;11:362-8.
Maregesi SM, Pieters L, Ngassapa OD, Apers S, Vingerhoets R,
Cos P, et al. Screening of some Tanzanian medicinal plants from
Bunda district for antibacterial, antifungal and antiviral activities.
J Ethnopharmacol 2008;119:58-66.
Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, et al.
Antithrombotic and anti-platelet activities of Korean red ginseng
extract. Basic Clin Pharmacol Toxicol 2007;100:170-5.
Da Silva LL, Nascimento MS, Cavalheiro AJ, Silva DH, Castro-
Gamboa I, Furlan M, et al. Antibacterial activity of labdane
diterpenoids from Stemodia foliosa. J Nat Prod 2008;71:1291-3.
Waghorn GC, Ulyatt MJ, John A, Fisher MT. The effect of condensed
tannins on the site of digestion of amino acids and other nutrients
in sheep fed on Lotus corniculatus L. Br J Nutr 1987;57:115-26.
Wang Y, Douglas GB, Waghorn GC, Barry TN, Foote AG.
Effect of condensed tannins in Lotus corniculatus upon lactation
performance in ewes. J Agric Sci 1996;126:353-62.
Aerts RJ, McNabb WC, Molan A, Brand A, Peters JS, Barry TN.
Condensed tannins from Lotus corniculatus and Lotus pedunculatus
(Rubisco) protein in the rumen differently. J Sci Food Agric
;79:79-85.
Li M, Xu Z. Quercetin in a Lotus leaves extract may be responsible
for antibacterial activity. Arch Pharm Res 2008;31:640-4.
Abdel-Ghani AE, Hafez SS, Abdel-Aziz EM, El-Shazly AM.
Phytochemical and biological studies of Lotus corniculatus var.
Ternuifolius L. Growing Egypt. Alex J Pharm Sci 2001;15:103-8.
Reynaud J, Lussignol M. The flavonoids of Lotus corniculatus. Lotus
Newlett 2005;35:75-82.
Robbins MP, Paolocci F, Hughes JW, Turchetti V, Allison G,
Arcioni S, et al. Sn, a maize bHLH gene, modulates anthocyanin
and condensed tannin pathways in Lotus corniculatus. J Exp Bot
;54:239-48.
Hedqvist H, Mueller-Harvey I, Reed JD, Krueger CG, Murphy
M. Characterisation of tannins and in vitro protein digestibility
of several Lotus corniculatus varieties. Anim Feed Sci Technol
;87:41-56.
Rizk AM, Heiba HI, Ma'ayergi HA, Batanouny KH. Constituents
of plants growing in Qatar. Fitoterapia 1986;57:3-9.
Goverde M, Bazin A, Kéry M, Shykoff JA, Erhardt A. Positive effects
of cyanogenic glycosides in food plants on larval development of
the common blue butterfly. Oecologia 2008;157:409-18.
Harborne JB, Harborne AJ. Phytochemical methods. In: Harborne
JB, editor. A guide to modern techniques of plant analysis, 1st ed.,
London, UK: Chapman and Hall; 1998. p. 40-214.
Hung CY, Yen GC. Extraction and identication of antioxidative
components of hsian-tsao (Mesona procumbens Hemsl.). Lebensm
Wiss Technol 2001;34:306-11.
Urgaonkar S, Shaw JT. Synthesis of kaempferitrin. J Org Chem
;72:4582-5.
Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH.
Algorithms for identification of aerobic Gram-negative and
Gram-positive bacteria. In: Baron EJ, editor. Manual of clinical
microbiology. 3rd ed. Washington, USA: ASM Press; 2003. p.
-700 and 719-79.
Clinical and Laboratory Standards Institute (CLSI). Performance
Standards for Antimicrobial Susceptibility Testing:Eighteenth
Informational Supplement M100-S18. Wayne, PA: Clinical and
Laboratory Standards Institute; 2008.
Rahman M, Kühn I, Rahman M, Olsson-Liljequist B, Möllby R.
Evaluation of a scanner-assisted colorimetric MIC method for
susceptibility testing of gram-negative fermentative bacteria. Appl
Environ Microbiol 2004;70:2398-403.
Machado M, Cechinel-Filho V, Tessarolo R, Mallmann R, Silva CM,
Cruz AB. Potent Antibacterial activity of Eugenia umbelliflora.
Pharm Biol 2005;43:636-9.
RÃos JL, Recio MC. Medicinal plants and antimicrobial activity. J
Ethnopharmacol 2005;100:80-4.
Bosio K, Avanzini C, D’Avolio A, Ozino O, Savoia D. In vitro
activity of propolis against Streptococcus pyogenes. Lett Appl
Microbiol 2000;31:174-7.
Okusa PN, Penge O, Devleeschouwer M, Duez, P. Direct and
indirect antimicrobial effects and antioxidant activity of Cordia
gilletii De Wild (Boraginaceae). J Ethnopharmacol 2007;112:476-81.
Mengoni F, Lichtner M, Battinelli L, Marzi M, Mastroianni CM,
Vullo V, et al. In vitro antibacterial-HIV activity of oleanolic acid
on infected human mononuclear cells. Planta Med 2002;68:111-4.
Horiuchi K, Shiota S, Hatano T, Yoshida T, Kuroda T, Tsuchiya T.
Antimicrobial activity of oleanolic acid from Salvia officinalis and
related compounds on vancomycin-resistant enterococci (VRE).
Biol Pharm Bull 2007;30:1147-9.
Fontanay S, Grare M, Mayer J, Finance C, Duval RE. Ursolic,
oleanolic and betulinic acids: Antibacterial spectra and selectivity
indexes. J Ethnopharmacol 2008;120:272-6.
Kilani S, Ben-Sghaier M, Limem I, Bouhlel I, Boubaker J, Bhouri W,
et al. In vitro evaluation of antibacterial, antioxidant, cytotoxic and
apoptotic activities of the tubers infusion and extracts of Cyperus
rotundus. Bioresour Technol 2008;99:9004-8.
Urgaonkar S, La Pierre HS, Meir I, Lund H, Ray-Chaudhuri D, Shaw
JT. Synthesis of antimicrobial natural products targeting FtsZ:(+/)-
dichamanetin and (+/-)-2' ''-hydroxy-5' '-benzylisouvarinol-B. Org
Lett 2005;7:5609-12.
Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J
Antimicrob Agents 2005;26:343-56.
Piddock LJ, Walters RN, Diver JM. Correlation of quinolone
MIC and inhibition of DNA, RNA, and protein synthesis and
induction of the SOS response in Escherichia coli. Antimicrob Agents
Chemother 1990;34:2331-6.
Vollmer W. The prokaryotic cytoskeleton: A putative target
for inhibitors and antibiotics? Appl Microbiol Biotechnol 2006;
:37-47.
Nazif NM. Phytoconstituents of Zizyphus spina-christi L. fruits and
their microbial activity. Food Chem 2002;76:77-81.